Modelling Indoor Air Quality Using Sensor Data and Machine Learning Methods

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202103301762
Title: Modelling Indoor Air Quality Using Sensor Data and Machine Learning Methods
Author: Muiruri, Dennis
Other contributor: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Publisher: Helsingin yliopisto
Date: 2021
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202103301762
http://hdl.handle.net/10138/328527
Thesis level: master's thesis
Degree program: Datatieteen maisteriohjelma
Master's Programme in Data Science
Magisterprogrammet i data science
Specialisation: Mathematics / Computer and data science / Physics / Chemistry
Mathematics / Computer and data science / Physics / Chemistry
Mathematics / Computer and data science / Physics / Chemistry
Abstract: Ubiquitous sensing is transforming our societies and how we interact with our surrounding envi- ronment; sensors provide large streams of data while machine learning techniques and artificial intelligence provide the tools needed to generate insights from the data. These developments have taken place in almost every industry sector with topics such as smart cities and smart buildings becoming key topical issues as societies seek more sustainable ways of living. Smart buildings are the main context of this thesis. These are buildings equipped with various sensors used to collect data from the surrounding environment allowing the building to adapt itself and increasing its operational efficiency. Previously, most efforts in realizing smart buildings have focused on energy management and au- tomation where the goal is to improve costs associated with heating, ventilation, and air condi- tioning. A less studied area involves smart buildings and their indoor environments especially relative to sub-spaces within a building. Increased developments in low-cost sensor technologies have created new opportunities to sense indoor environments in more granular ways that provide new possibilities to model finer attributes of spaces within a building. This thesis focuses on modeling indoor environment data obtained from a multipurpose building that serves primarily as a school. The aim is to explore the quality of the indoor environment relative to regulatory guidelines and also exploring suitable predictive models for thermal comfort and indoor air quality. Additionally, design science methodology is applied in the creation of a proof of concept software system. This system is aimed at demonstrating the use of Web APIs to provide sensor data to clients that may use the data to render analytics among other insights to a building’s stakeholders. Overall, the main technical contributions of this thesis are twofold: (i) a potential web-application design for indoor air quality IoT data and (ii) an exposition of modeling of indoor air quality data based on a variety of sensors and multiple spaces within the same building. Results indicate a software-based tool that supports monitoring the indoor environment of a building would be beneficial in maintaining the correct levels of various indoor parameters. Further, modeling data from different spaces within the building shows a need for heterogeneous models to predict variables in these spaces. This implies parameters used to predict thermal comfort and air quality are different in varying spaces especially where the spaces differ in size, indoor climate control settings, and other attributes such as occupancy control.
Subject: IoT
Sensors
Smart Buildings
Indoor Air Quality
Predicting
Machine Learning


Files in this item

Total number of downloads: Loading...

Files Size Format View
Muiruri_Dennis_thesis_2021.pdf 1.939Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record